Algebra. Solve by Substitution 3x+4y=5 , 2x-3y=-8. 3x + 4y = 5 , 2x - 3y = - 8. Solve for x in 3x + 4y = 5. Tap for more steps x = 5 3 - 4y 3. 2x - 3y = - 8. Replace all occurrences of x with 5 3 - 4y 3 in each equation. Tap for more steps 20 15. 30 10. Given that you have only two set of data, you can only assume a linear model. To find the linear model (equation) that predict the number of cars (x) as a functionn of the parking fee (f) you follow, using only two set of data, follow this procedure: 1) Find the slope, m. m = [10 - 15] / [30 - 20] = - 5 / 10 = - 0.5. Answer:B. y = -5/2x +3/2Step-by-step explanation: 5x + 2y = 3 We want to get this in the formy = mx +b where m is the slope and b is the y interceptSubtract 5x from. Wolfram|Alpha calls Wolfram Languages's D function, which uses a table of identities much larger than one would find in a standard calculus textbook. It uses well-known rules such as the linearity of the derivative, product rule, power rule, chain rule and so on. Additionally, D uses lesser-known rules to calculate the derivative of a wide 2x+y=6;2x-y=2 Solution : {x,y} = {2,2} System of Linear Equations entered : [1] 2x + y = 6 [2] 2x - y = 2 Graphic Representation of the Equations : y + 2x = 6 y + 2x = 2 Solve by Substitution : y= (279/10)x+ (345/10) Geometric figure: Straight Line Slope = 55.800/2.000 = 27.900 x-intercept = 345/-279 = 115/-93 = -1.23656 y-intercept = 345/ Which expression is equivalent to x + y + x + y + 3(y + 5)? 2x + 5y + 5 2x + y + 30 2x + 5y + 15 2x + 3y + 10 . heart outlined. Thanks . Zadanie BabellaRozwiąż równania : a)3x - 2 = 1/2x+3 b) 2x-4=1/3x-2 c) x= x/2 + x/3-2 d) 8y - 3 = 11y-1/2 f) x/3= x-2/5 g) z+3/2 - z-4/3= 0 Pomocy !!! SZYBKooo!!!!!!! szkolnaZadaniaMatematyka Odpowiedzi (2) agusia80 a)3x - 2 = 1/2x+3 |*26x - 4 = x + 65x = 10x = 2b) 2x-4=1/3x-2 |*36x - 12 = x - 65x = 6x = 1,2c) x= x/2 + x/3-2 |*66x = 3x + 2x - 12x = -12d) 8y - 3 = 11y-1/2 |*216y - 6 = 22y - 1-6y = 5y = -5/6f) x/3= x-2/5 |*155x = 15x - 6-10x = -6x = 0,6g) z+3/2 - z-4/3= 0 |*66z + 9 - 6z - 8 = 00 = -1sprzeczne o 17:17 agusia80 odpowiedział(a) o 18:21: mam dobrze Nifrea odpowiedział(a) o 20:26: nie chodzi tylko o wynik, ale również o sposób wykonania działań. tak się ułamków nie usówa... całe równanie mnoży się dopiero w wypadku, gdy w liczniku jest n Nifrea odpowiedział(a) o 20:26: jest niewiadoma Nifrea odpowiedział(a) o 15:57: ciekawe, że jakoś mnie nigdy nie uczyli tego w szkole Nifrea 3x-1/2x=3+22,5x=5x=22x-1/3x=-2+41 2/3x=2x=2:5/3x=2*3/5x=6/5=1,2x=x/2+x/3-2 //*66x=3x+2x-126x-5x=-12x=-128y-11y=-1/2+3-3y=2,5x=2,5:(-3)x=0,83x/3=x-2/5 //*3x=3x-6/52x=6/5x=1,2:2x=0,6x+3/2-x-4/3=00x=-9/6+8/60x=-1/6jest to równanie sprzeczne, nie ma ono rozwiązania, o 17:46 agusia80 odpowiedział(a) o 09:24: sorki-za długi link i nie wchodzi Nifrea odpowiedział(a) o 15:57: ciekawe, że jakoś nigdy mnie tego nie uczyli w szkole... agusia80 odpowiedział(a) o 16:01: całe życie się uczymy :) agusia80 odpowiedział(a) o 16:04: przy okazji-mnie też nie uczyli (albo nie było mnie na tych lekcjach) :) ale teraz moich synów tak uczą. więc to jest dobrze zrobione :) Explanation: The slope is #2# and the y-intercept is #3#. That means that starting point is #(0,3)# and as #x# increases by #1#, #y# increases by #2#. So some points would be: #(0,3)#, #(1,5)#, #(2,7)# Plot these three points and draw a line through them: graph{2x+3 [ Niech będą dane dwie proste: \[y=a_1x+b_1\] oraz \[y=a_2x+b_2\] Proste są równoległe, jeżeli ich współczynniki kierunkowe są równe, czyli: \[a_1=a_2\] Proste są prostopadłe, jeżeli ich współczynniki kierunkowe spełniają zależność: \[a_1\cdot a_2=-1\]Prosta o równaniu \(y=\frac{2}{m}x+1\) jest prostopadła do prostej o równaniu \(y=-\frac{3}{2}x-1\). Stąd wynika, że A.\( m=-3 \) B.\( m=\frac{2}{3} \) C.\( m=\frac{3}{2} \) D.\( m=3 \) DProsta \(l\) ma równanie \(y=-\frac{1}{4}x+7\). Wskaż równanie prostej prostopadłej do prostej \(l\). A.\( y=\frac{1}{4}x+1 \) B.\( y=-\frac{1}{4}x-7 \) C.\( y=4x-1 \) D.\( y=-4x+7 \) CProstymi równoległymi są wykresy funkcji liniowych: A.\( y=\frac{4}{3}x+5\ \) i \(\ y=-\frac{3}{4}x+5\) B.\( y=\frac{4}{3}x+5\ \) i \(\ y=-\frac{4}{3}x+5\) C.\( y=\frac{4}{3}x+5\ \) i \(\ y=\frac{3}{4}x-5\) D.\( y=\frac{4}{3}x+5\ \) i \(\ y=\frac{4}{3}x-5\) DProste \(y=-3x+4\) i \(y=\left ( \frac{1}{3}a^2-\frac{4}{3} \right )x\) są prostopadłe, jeżeli A.\( a=-2\ \) lub \(\ a=2\) B.\( a=2 \) C.\( a=\sqrt{5} \) D.\( a=-\sqrt{5}\ \) lub \(\ a=\sqrt{5}\) DProstą przechodzącą przez punkt \(A = (1,1)\) i równoległą do prostej \(y=0{,}5x-1\) opisuje równanie A.\( y=-2x-1 \) B.\( y=\frac{1}{2}x+\frac{1}{2} \) C.\( y=-\frac{1}{2}x+\frac{1}{2} \) D.\( y=2x-1 \) BProste \(l\) i \(k\) są prostopadłe i \(l{:}\ 2x-9y+6=0,\ k{:}\ y=ax+b\). Wówczas: A.\( a=-\frac{2}{9} \) B.\( a=\frac{2}{9} \) C.\( a=-\frac{9}{2} \) D.\( a=\frac{9}{2} \) CProsta prostopadła do prostej \(l\) o równaniu \(4x-5y+6=0\) ma wzór: A.\( y=-\frac{1}{5}x+b \) B.\( y=-\frac{1}{4}x+b \) C.\( y=-\frac{4}{5}x+b \) D.\( y=-\frac{5}{4}x+b \) DWskaż równanie prostej prostopadłej do prostej o równaniu \(2x-4y=5\). A.\( y=\frac{1}{2}x \) B.\( y=-\frac{1}{2} \) C.\( y=2x \) D.\( y=-2x \) DWspółczynnik kierunkowy prostej równoległej do prostej o równaniu \(y = -3x + 5\) jest równy A.\( -\frac{1}{3} \) B.\( -3 \) C.\( \frac{1}{3} \) D.\( 3 \) BWskaż równanie prostej równoległej do prostej o równaniu \( 3x-6y+7=0 \) A.\(y=\frac{1}{2}x \) B.\(y=-\frac{1}{2}x \) C.\(y=2x \) D.\(y=-2x \) AWyznacz wszystkie parametry \(m\) dla których prosta o równaniu \(y = (m - 1)x + 5\) jest rosnąca równoległa do prostej \(y = -6x + 3\) a) \(m\gt 1\) b) \(m=-5\)Wyznacz wszystkie parametry \(m\) dla których prosta o równaniu \(y = (3 - 2m)x + 5\) jest malejąca prostopadła do prostej \(y = 2x-3\) a) \(m\gt \frac{3}{2}\) b) \(m=\frac{7}{4}\)Proste o równaniach \(y=2x-5\) i \(y=(3-m)x+4\) są równoległe. Wynika stąd, że A.\( m=1 \) B.\( m=\frac{5}{2} \) C.\( m=\frac{7}{2} \) D.\( m=5 \) AWskaż równanie prostej równoległej do prostej o równaniu \( y=2x-7 \). A.\(y=-2x+7 \) B.\(y=-\frac{1}{2}x+5 \) C.\(y=\frac{1}{2}x+2 \) D.\(y=2x-1 \) DKtóre z poniższych równań opisuje prostą prostopadłą do prostej o równaniu \( y=4x+5 \). A.\(y=-4x+3 \) B.\(y=-\frac{1}{4}x+3 \) C.\(y=\frac{1}{4}x+3 \) D.\(y=4x+3 \) BNapisz równanie prostej równoległej do prostej o równaniu \(2x-y-11=0\) i przechodzącej przez punkt \(P=(1,2)\).\(y=2x\)Wybierz i zaznacz równanie opisujące prostą prostopadłą do prostej o równaniu \(y=\frac{1}{2}x+1\). A.\( y=-2x+1 \) B.\( y=0{,}5x-1 \) C.\( y=-\frac{1}{2}x+1 \) D.\( y=2x-1 \) AProsta \(l\) ma równanie \(y=2x-11\). Wskaż równanie prostej równoległej do \(l\). A.\( y=2x \) B.\( y=-2x \) C.\( y=-\frac{1}{2}x \) D.\( y=\frac{1}{2}x \) AProsta \(l\) ma równanie \(y=2x-11\). Wskaż równanie prostej prostopadłej do \(l\). A.\( y=2x \) B.\( y=-2x \) C.\( y=-\frac{1}{2}x \) D.\( y=\frac{1}{2}x \) CProsta \(l\) ma równanie \(2y-x=4\). Wskaż równanie prostej równoległej do \(l\). A.\( y=2x \) B.\( y=-2x \) C.\( y=-\frac{1}{2}x \) D.\( y=\frac{1}{2}x \) DProstą równoległą do prostej o równaniu \(y=\frac{2}{3}x-\frac{4}{3}\) jest prosta opisana równaniem A.\( y=-\frac{2}{3}x+\frac{4}{3} \) B.\( y=\frac{2}{3}x+\frac{4}{3} \) C.\( y=\frac{3}{2}x-\frac{4}{3} \) D.\( y=-\frac{3}{2}x-\frac{4}{3} \) BProste o równaniach \(-3y - mx + 12 = 0\) oraz \(y = 6x - 12\) są prostopadłe dla \(m\) równego: A.\( \frac{1}{2} \) B.\( -18 \) C.\( -\frac{1}{2} \) D.\( 6 \) AWykresy funkcji liniowych \( f(x)=\frac{\sqrt{5}}{3}x+6 \) oraz \( g(x)=\frac{5}{3\sqrt{5}}x-\frac{1}{6} \) : prostopadłe się, ale nie są prostopadłe się równoległe, ale się nie pokrywają DDane są równania czterech prostych: Prostopadłe są proste: A.\(l\) i \( n \) B.\(l\) i \( m \) C.\(k\) i \( n \) D.\(k\) i \( m \) DRównania \( y=-\frac{3}{4}x+\frac{5}{4} \text{ oraz } y=-\frac{4}{3} \) opisują dwie proste się pod kątem o mierze \( 90 ^\circ \). się. się pod kątem różnym od \( 90 ^\circ \). i różne. CWskaż równanie prostej, która jest równoległa do prostej o równanie \(12x+4y+3=0\) A.\( y=12x \) B.\( y=-12x \) C.\( y=3x \) D.\( y=-3x \) DWyznacz wszystkie parametry \(m\) dla których proste \(y=(m^2+1)x-3\) oraz \(y=-\frac{1}{3}x+2m\) są prostopadłe.\(m=\sqrt{2}\) lub \(m=-\sqrt{2}\)Prosta \(l\) o równaniu \(y=m^2x+3\) jest równoległa do prostej \(k\) o równaniu \(y=(4m-4)x-3\). Zatem: A.\( m=2 \) B.\( m=-2 \) C.\( m=-2-2\sqrt{2} \) D.\( m=2+2\sqrt{2} \) AProste o równaniach: \(y=2mx-m^2-1\) oraz \(y=4m^2x+m^2+1\) są prostopadłe dla A.\( m=-\frac{1}{2} \) B.\( m=\frac{1}{2} \) C.\( m=1 \) D.\( m=2 \) APunkty \(A = (-3, 4)\) i \(C = (1,3)\) są wierzchołkami kwadratu \(ABCD\). Wyznacz równanie prostej zawierającej przekątną \(BD\) tego kwadratu.\(y=4x+\frac{15}{2}\) SolutionStep 1: Simplify the term algebraic equations which are valid for all values of variables in them are called algebraic identities. They are also used for the factorization of the algebraic identity a-b3=a3-b3-3aba-b to simplify the expression 2x-5y3:2x-5y3=2x3-5y3-32x5y2x-5y=8x3-125y3-30xy2x-5y=8x3-125y3-60x2y+150xy2∴2x-5y3=8x3-125y3-60x2y+150xy2Step 2: Simplify the term 2x+ the algebraic identity a+b3=a3+b3+3aba+b to simplify the expression 2x+5y3:2x+5y3=2x3+5y3+32x5y2x+5y=8x3+125y3+30xy2x+5y=8x3+125y3+60x2y+150xy2∴2x+5y3=8xStep 3: Simplify the given expression 2x-5y3-2x+5y3:Use the results obtained in Steps 1 and 2 to simplify the expression 2x-5y3-2x+5y3:2x-5y3-2x+5y3=8x3-125y3-60x2y+150xy2-8x3+125y3+60x2y+150xy2=8x3-125y3-60x2y+150xy2-8x3-125y3-60x2y-150xy2=8x3-8x3-125y3-125y3-60x2y-60x2y+150xy2-150xy2=-250y3-120x2yHence, 2x-5y3-2x+5y3= Corrections3

y 5 2x 3